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Tone Detection Via Incoherent Averaging of Fourier
Transforms to Support the Automated
Spacecraft-Monitoring Concept

G. Lanyi and R. Kahn
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An algorithm is presented for detection of very weak spacecraft tones generated
by an onboard auxiliary oscillator with stability specifications similar to those of
the small deep space transponder. Signal power is evaluated via discrete Fourier
transforms, and detection is determined by comparing the measured power with a
predetermined threshold. Limited oscillator stability precludes coherent integration
of the signal over time scales longer than a few seconds; thus, the Fourier transform
is performed independently on successive segments of data. Resulting power spectra
are then averaged; potential frequency drift is accounted for by shifting the spectra
when forming the average. The detection scheme is well suited to the proposed
automated spacecraft monitoring system, in which a spacecraft sends a carrier sig-
nal modulated with one of four subcarrier frequencies to indicate the spacecraft’s
current state. Analysis based on theory and measurements indicates that reliable
detection in a 1000-s interval can be achieved at a power signal-to-noise-density
level, P/Ny, as low as —1 dB-Hz.

[. Introduction

The automated spacecraft monitoring system (ASMS)?! is a proposed system for performing low-cost
multispacecraft monitoring in an era when a multitude of small spacecraft missions will create high
demand for ground tracking resources.? Under the current spacecraft-tracking paradigm, large (34-m
to 70-m) antennas with very low-noise amplifiers track interplanetary spacecraft for many hours at a
time, even during cruise phases of missions when data return is minimal. The spirit of the ASMS is
to dramatically reduce tracking time and the use of the largest ground antennas during mission phases
in which high-rate data return is not required. Also, the automated nature of the detection combined
with simplified scheduling of antenna tracking should reduce the cost of Deep Space Network (DSN)
operations.

In order to enable the use of smaller antennas, a simple signaling scheme is envisioned: The spacecraft
transmits a message consisting of a carrier signal modulated by a square-wave subcarrier at one of four

L Also referred to as a beacon-monitoring or detection system.

2T. Peng and M. Sue, “Automatic S/C Monitoring Study,” Study Outline (internal document), Jet Propulsion Laboratory,
Pasadena, California, January 25, 1996.



known frequencies. Each of the four possible modulating frequencies represents a status of the spacecraft;
thus, to interpret the message, the receiver must determine which of the four frequencies is modulating
the carrier. The goal is to perform this signal detection using a dedicated antenna that could be a current
34-m or smaller (>5-m) antenna, in a time period of 20 minutes or less. Allowing another 20 minutes for
slewing and postprocessing, a single receiver may be able to monitor at least 36 probes in a 24-hour period.
Spacecraft that transmit messages indicating that they are in trouble or that they need to transmit data
would subsequently be scheduled for tracking with a larger (34-m or 70-m) DSN antenna, at which time
the spacecraft would modulate the subcarrier with telemetry in the usual manner.

The increased emphasis on low-cost interplanetary missions suggests that most future spacecraft will
not be equipped with ultrastable oscillators. As a result, the frequency of a transmitted signal will
exhibit significant short-term jitter and may drift by tens of Hertz or more during a 20-minute period.
The oscillator instability, together with the low signal-to-noise ratio resulting from a combination of low
transmitted power, low spacecraft antenna gain, low ground antenna gain, and relatively high receiver
noise temperature on the ground, presents a challenge to the signal detection algorithm.

This article describes an algorithm designed to enable reliable signal detection by comparing the
measured signal power to a predetermined threshold. Discrete Fourier transforms (DFTs) provide an
approximate measure of received signal power as a function of frequency; consequently, the detection
method also yields the signal frequency. This type of approximation of the power spectrum traditionally
is referred to as a periodogram. The fast Fourier transform (FFT) algorithm is employed for efficient
implementation of the discrete Fourier transforms. The final power spectrum is obtained by averaging a
sequence of short-duration (typically up to a few seconds) power spectra. Because of oscillator instability,
Fourier transforms cannot be performed over longer time intervals; the spacing of the frequency search
must exceed the frequency-jitter range of the oscillator for a given integration time, and this constraint
translates to an upper bound on coherent integration times. For a sufficiently strong signal, an integration
time of a few seconds is adequate to detect the signal with high confidence. On the other hand, for weak
signals, such as those envisioned for the ASMS system, the probability of detection is too low at such
short integration times. In this case, however, the detection performance can be improved significantly
by averaging the power of a series of disjoint Fourier transforms. In order to account for the frequency
drift, the Fourier spectra must be aligned properly prior to averaging.

The performance of the detection algorithm depends on the success rate of discrimination between the
signal power and the thermal noise of the receiver system. Therefore, probabilistic measures must be used
for performance goals. We apply a form of the Neyman—Pearson criteria [1-3] for detection threshold
determination; performance is characterized by computing the signal-to-noise threshold required to attain
specified probabilities of false alarm, while optimizing the probability of detection. The threshold, once
determined from a specific probability of false alarm, imposes a constraint on the total communication
link budget: The spacecraft transmitted power, spacecraft and ground antenna gains, receiver noise
temperature, and spacecraft—Earth range must yield a received signal whose power-to-noise ratio exceeds
the threshold with a given value of detection probability. In this probabilistic detection scheme, it is
assumed that the signal tone always is present within the boundaries of the frequency range under
consideration. It should be noted that a detection of the tone also determines the tone frequency.

The outlined detection algorithm can be implemented purely in software or in a combination of
software and hardware devices. In general, the data must be prepared and collected before the
detection algorithm is applied. The radio-frequency spacecraft signal is downconverted to an in-
termediate frequency, digitized, downconverted again, and filtered to a baseband channel that is
sufficiently narrow to ease the computational burden but wide enough to encompass uncertainty
in the spacecraft frequency. The data stream preparation and the implementation of the detec-
tion algorithm may be carried out in several ways. A future demonstration will make use of the
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Fig. 1. Block diagram of the full spectrum recorder.

Full Spectrum Recorder (FSR) developed by the Jet Propulsion Laboratory (JPL) (Fig. 1);® the FSR will
handle the data collection and processing to perform actual spacecraft status detection. In this case, the
carrier radio frequency first is downconverted to an intermediate (~ 300-MHz) frequency; then the FSR
digitally samples at 256 MHz and downconverts the signal to 2- to 10-kHz baseband channels using digital
filters and a programmable oscillator as the mixing reference. The mixing frequencies are calculated from
predictions of the received spacecraft frequency. The detection software residing on the control computer
then processes the data in near-real time.

Before a detailed discussion of the algorithm is presented, a review of the relevant background in-
formation is in order. Most of the principles applied in this article were developed for radar signal
detection during and shortly after World War II. An excellent exposition of the subject can be found in
[4]. A more recent scientific application of the spectral power detection method was used in the Search
for Extraterrestrial Intelligence (SETI) project [5] for low signal-to-noise levels. Recent related analyses
originated at JPL include studies of fast Fourier transform efficiency for the Experimental Tone Tracker
(ETT),* Fourier power summing for very long baseline interferometry (VLBI) and spacecraft-tracking
application [6],° a cursory examination of ASMS detection efficiency by Kinman,% and a more elaborate
study of probabilistic detection schemes [7]. In the absence of a firm estimate of the signal-to-noise-ratio
threshold, JPL ASMS studies continued. The research presented in this article is based on the Fourier

3 DSCC Galileo Telemetry Subsystem, Functional Design and Software Requirements Document, TDA/DSN 834-43, JPL
D-11226 (internal document), Jet Propulsion Laboratory, Pasadena, California, December 21, 1993.

48. A. Stephens, “An Analysis of FFT Tone Acquisition,” JPL Interoffice Memorandum 335.1-92-14 (internal document),
Jet Propulsion Laboratory, Pasadena, California, May 14, 1992.

5R. Kahn, “A Note on the Advantage Gained by Combining DFT Amplitudes From Several Channels When Conducting a
Fringe Search With Block I VLBI Data,” JPL Interoffice Memorandum 335.1-92-29 (internal document), Jet Propulsion
Laboratory, Pasadena, California, October 12, 1992.

6 P. Kinman, “Very Low Rate Noncoherent Frequency-Shift Signaling,” JPL Interoffice Memorandum (internal document),
Jet Propulsion Laboratory, Pasadena, California, December 14, 1995.



power averaging detection method” and initially adapted computer code written by J. Border for the
Earth-based detection of the Galileo probe signal [8]. Some of the findings of this article were included
in an internal document.® A parallel investigation led to a recent report [9] examining several different
detection strategies, the best of which is close both in principle and numerics to the results presented in
this article for the case of an ideal detection of a jitter-free tone.

Il. Detection Algorithm for a Single Power Spectrum

For simplicity, we first consider the detection of a single pure tone. Estimates of the required power-
to-noise-density ratio for single-tone detection will be corrected later for the signal structure of the
proposed ASMS system, which consists of a carrier modulated by a square wave at four possible subcarrier
frequencies (see Appendix A).

Signal detection is performed by selecting a threshold power, 7, that is large enough so that the noise
power at frequencies with no signal power present does not often exceed 7, yet small enough so that
the power at the signal frequency exceeds n with high probability.” The first task is to determine these
probabilities for detection via a single Fourier transform.

As defined in Appendix C, the probability distribution of the noise amplitudes a(vy) and b(vy) at a
frequency v is a two-dimensional, central and symmetric, Gaussian distribution with a variance of o2.
Thus, the probability distribution of the spectral power at a Fourier frequency associated only with noise
is described as a x? random variable with two degrees of freedom. Therefore, the probability of false
alarm Pp, i.e., the probability that the noise power P, exceeds a power-detection threshold 1, may be
written as

o0

Pr=P(P,>n) = / dye ¥ = e/’ (1)

n/o?

The spectral power Py, at the signal frequency may be described as a noncentral x? random variable
with two degrees of freedom. The corresponding probability distribution is called a Ricean distribution,
after S. O. Rice, who studied the bivariate Gaussian distribution extensively for signal processing [10]. It
can be shown that the probability of detection Pp, i.e., the probability that the spectral power Psy,, at
the Fourier frequency of the signal, in the presence of noise, exceeds threshold 7, is

o0

Pp =P(Psyy >1) = / dy e~ W) Io(2\/yyo) (2)

n/o?

where 1y is the power signal-to-noise ratio at the signal tone frequency,

7R. Kahn and G. Lanyi, “Proposal to Study ‘Quick Look’ Signal Detection for the Automatic Spacecraft Monitoring
System,” JPL Interoffice Memorandum (internal document), Jet Propulsion Laboratory, Pasadena, California, January
29, 1996.

8 R. Kahn and G. Lanyi, “Automatic Spacecraft Monitoring Concept Demonstration Progress Report,” JPL Interoffice
Memorandum 335.1-96-10 (internal document), Jet Propulsion Laboratory, Pasadena, California, May 30, 1996. See also
M. K. Sue, R. Kahn, G. Lanyi, V. Vilnrotter, M. Simon, and T. Peng, Automated Spacecraft Monitoring System (ASMS)
Study Report, JPL D-14396 (internal document), Jet Propulsion Laboratory, Pasadena, California, March 15, 1997.

9 A list of the symbols used throughout this article is provided in Appendix B.
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Iy(z) denotes the modified Bessel function of zeroth order [11], Ps is the signal power, T is the integration
time of the Fourier transform, and Ny denotes the constant spectral density of thermal noise. The
complement of Pp is the probability of missed detection:

Py=1-Pp (4)

Equation (1) defines the probability of false alarm at a single Fourier frequency. One can also define
a probability of false alarm occurring anywhere within the entire frequency search range. This is the
probability of a false detection, Pfaise, i.€., the probability that the noise power exceeds the threshold
7 at any frequency in the Fourier spectrum, other than the frequency under consideration for detection.
Given n frequencies and n independent samples, the probability that the noise power at least at one of
the n—1 frequencies exceeds the threshold 1 is Pryse = 1—(1— PF)(”_l). In the ASMS detection scheme
described in Section I and Appendix A, a message tone can be present in any of four frequency bands,
each containing N Fourier frequencies. Thus, n = 4N and, consequently,

Pfalse =1- (1 — PF)(”_I) =1— (1 _ PF>4N71 (5)

In the above discussions, the signal frequency has been assumed to correspond to one of the Fourier
frequencies. In general, the tone lies between the discrete Fourier frequencies and drifts during the
integration. As a result, the power spectrum of the tone spreads over all Fourier frequencies, and thus the
observed peak spectral power is less than the original power of the tone. To find a better approximation
of the peak power, either the Fourier transform of the tone is interpolated by employing the method of
“zero padding” or the tone frequency is shifted closer to the Fourier frequency. Both of these methods
are described in Appendix D. With these improvements, there still remains a signal power loss due to the
frequency drift; this effect will be discussed below.

The ASMS assumptions defined in Appendix A can be applied to yield an estimate of required power
signal-to-noise-ratio level for reliable detection. For a frequency uncertainty of +1 kHz, the sampling
interval Ty must be <1/2000 s.1° The coherent integration time of the Fourier transform, T' = NTj, must
be small enough so that the tone is not allowed to drift beyond a single Fourier frequency spacing, Av,
during the integration period, T'. Actually, this condition is not optimal, because the power loss is 4 dB
at the extremes of the frequency spacing (Appendix D). To keep the mean loss within a few tenths of
a dB, the drift range must be on the order of Av/2. The actual linear drift range is half of this value
and thus Av/4, since the linear-drift function is centered at the Fourier frequency (see Footnote 17 in
Appendix E). This condition restricts the integration time T'; the estimation of T" and a calculation of the
corresponding power losses are presented in Appendix E. With the given ASMS specification of oscilllator
noise levels and linear drift limits, the result is that 7" must be near 1 s, and at T = 1 s, the power loss
due to frequency drifts is ~0.45 dB. Given that Ts = 1/2000, our current choice of T' =1 s corresponds
to N = 2000 terms in the Fourier sum.

Summarizing the results, Fig. 2 plots the probability of missed detection, Py, against the probability of
false detection with N = 2000 at fixed power signal-to-noise levels (P/Ng)T. For the duration of ' =1 s,
the required P/Ny is ~16 dB-Hz at the probability values chosen in Section VII: Pfqise = Py = 5 X 104,

10 This corresponds to a sampling rate less than or equal to the half Nyquist rate, because the baseband data stream is
complex valued.
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Fig. 2. Missed detection probability versus false
alarm probability for a single  T-sec DFT for several
power-to-noise ratios, ( P/Ng)T. False alarm proba-
bilities are computed assuming 8000 Fourier fre-
guencies.

lll. Incoherent Average of Power Spectra

In order to detect a fixed-frequency signal via Fourier transform, it generally is best to integrate
coherently as long as possible to obtain the highest possible signal-to-noise ratio. The integration time
is limited, however, by signal-frequency variations, which cause amplitude loss and imprecise signal-
frequency determination. As discussed above, these effects can be reduced by choosing an integration
time short enough so that the frequency variation over the integration interval remains smaller than the
frequency spacing of the Fourier transform. Of course, a shorter integration leads to a higher thermal
noise level and, thus, to a lower signal-to-noise ratio. The variation of the noise level about its mean value,
however, can be decreased to a desired level by averaging the resulting power spectra over a sufficiently
long time period. The reduction in noise level variation, in turn, improves the detectability of the signal.

This process is illustrated in Fig. 3 for a Fourier integration time of 1 s. In this figure, the power level
is normalized to unity, and the power signal-to-noise ratio is chosen to be 1 dB. The figure shows that,
under incoherent power averaging, the mean level of the noise is constant, while the fluctuations about
the mean decrease as a function of integration time. However, the rate of decrease of the fluctuations
(o< 1/V/T) is not as steep as the rate at which the mean noise power and its variation (< 1/7") would
decrease if the Fourier transform could be extended for a longer time. Still, this effect makes it possible
to distinguish the signal from the noise with arbitrary certainty at sufficiently long observing times, if
the observed tone frequency is perfectly constant. Note, however, that detection by incoherent power
summing is not as efficient as detection via coherent integration, and the phase of the signal cannot be
determined in this way. It should also be pointed out that either averaging or summing of the power
leads to the same detection criteria if the detection thresholds are defined consistently. In this article,
both terminologies are used interchangeably; the probability formulas below refer to the sum of powers,
conforming to the literature.

Because of the frequency drift of the signal, the sequential power spectra must be aligned properly
in the frequency space; this procedure is discussed in the following section. Given the aligned power
spectra, one may consider a signal with constant tone frequency. We assume a sequence of M power
spectra and calculate the summed power at each frequency. The composite probability distribution of
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Fig. 3. Power noise levels versus integration time. The integration
time refers to three different processes: sampling, Fourier
transform, and incoherent average of Fourier spectra.

the noise amplitudes a(v) and b(v) for each frequency is now a 2M-dimensional Gaussian distribution,
and the probability distribution of the sum of the noise power is a x? distribution with 2M degrees of
freedom. It follows then that the probability of false detection Pg, i.e., that the total noise power P,
exceeds a total power threshold of 7y, is

[e%s} M—1 M-1 2\ k

—y Y — 2 (nar/o”)
Pr=P(P, = d [ A—— Y NIMTE 6
F = PP > ma) /W/az ve lr—in ¢ kZ:O E ©)

The probability distribution for the M-fold sum of the signal-plus-noise power is now a noncentral x>
distribution with 2M degrees of freedom [12]. Consequently, the probability of detection, Pp, i.e., the
total signal-plus-noise power, Ps,,, exceeds the threshold, 1y, is [13,14]

o0

(M-1)/2
dy e~ (Wtvom) <y) Ine—1(2\/yyomr) (7)

na /o2

where Ips_1(z) denotes the modified Bessel function of M — 1 order and the total power signal-to-noise
ratio, Yonr, 18 now

P,
YoM = MFOT (8)

For power averaging, instead of power summing, similar formulas can be derived, corresponding to nor-
malized x? probability distributions. The probability of false detection, Praise, is unaffected by either
power summing or averaging. However, it is modified by the increased search space resulting from the
unknown drift. Thus, the exponent n in Eq. (5) is given by n = 4N N,., where N, represents the number



of linear frequency drift rates under consideration.!! Therefore, the probability of false detection, in the
presence of frequency-drift-rate search, becomes

Ppojse = 1 — (1 — Pp)* Nt 9)

Numerical results of this section are presented in Figs. 4 and 5. These figures plot the missed-detection
probability against the false-detection probability for incoherent power sums of 100 and 1000 Fourier
transforms for NV = 2000 Fourier frequencies, N,, = 100 frequency rates, and a range of power signal-to-
noise ratios (P/Ny)T. For an integration time of T' = 1 s, these correspond to a detection over 100 or
1000 s. A comparison of these figures to Fig. 2 shows how the power signal-to-noise ratio, (P/Ng)T,
required to attain the same receiver performance is lowered by summing the individual signal powers.
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Fig. 4. Missed detection probability versus false
alarm probability for incoherent sums of 100 T-sec
DFTs for several power-to-noise ratios, ( P/Ng)T.
False alarm probabilities are computed assuming
8000 Fourier frequencies and 100 drift rates.

IV. Power Spectra Alignment

The frequency drift of the signal limits coherence time and, therefore, we resort to averaging of the
power spectra. In order to carry out the averaging, the frequency drift must be modeled and removed.
This can be done before the Fourier transform [9] or after the Fourier transform. Each method has ad-
vantages and disadvantages, as described below. The frequency drift model is chosen to be a polynomial
model; in its simplest form, it consists of a linear drift model. The model parameters are determined by
a systematic search: The optimum parameters correspond to the maximum detected signal power. If the
model is applied before the Fourier transform, then the model is a truly continuous function of time, and
the model drift is perfectly removed, but the Fourier transforms have to be performed for all necessary
values of model parameters under consideration; thus, the method can be computationally laborious. If

11 This relation is exact only for uncorrelated search paths in the time-frequency space. For the actual search space, the
equivalent value of n is smaller. The use of a larger value, however, results in a conservative over-estimate of the required
power signal-to-noise ratio for a given pair of probabilities of false and missed detections. This effect is relatively small;
reducing n by a factor of 3 decreases the required power signal-to-noise ratio by 0.2 dB in the case of Fig. 5.
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we apply the model after the Fourier transforms, then the model is discontinuous, due to the nature of
discrete Fourier transforms, there is some loss of signal power. However, in this case, a set of Fourier
transforms is performed only once, and the search for the optimum parameters is performed on this single
set of Fourier transforms. Since a real- or near-real-time detection is strongly preferred, only the latter
method is discussed in this article; it is computationally faster than the former case. Also, in the ASMS
case, the major power loss (=0.3 dB) is due to the changing displacement of the signal frequency with
respect to the Fourier frequencies over a sequence of Fourier transforms (Appendix D); the effect of the
frequency drift within a single Fourier transform is negligible, 0.003 dB (Appendix E). Thus, there is no
significant advantage to pre-Fourier-transform frequency modeling.

In this article, only a linear drift model is considered. The specified maximum drift rate is v =
£0.05 Hz/s and, since the Fourier resolution is Av = 1 Hz for an integration time of 7' = 1 s, an
observation of 1000 s thus requires N, = 100 discrete frequency rates in the frequency-rate search space
to keep the maximum accumulated frequency error within half of the Fourier spacing.

V. Detection of Two Tones

In the proposed ASMS signal detection scheme, the carrier is modulated by a square wave at four
possible subcarrier frequencies, producing a set of odd subharmonics centered around the carrier. If the
carrier is fully suppressed, then 81 percent of the power resides in the first upper and lower harmonics.
The upper and lower subharmonic tones cannot be coherently recombined in a direct fashion,'? but an
incoherent power sum of these tones still improves the detection performance.

Incoherent power summing is effective when the error of the known differential frequency between the
upper and lower harmonics is sufficiently smaller than the resolution of the Fourier transform. If the
differential frequency of the harmonics is uncertain relative to the Fourier spacing, the summed power is

12 The unknown differential phase offset and phase noise limit the coherent recombination. A search in the differential phase
domain would make recombination possible; thus, one could regain most of the 1-dB loss due to incoherent summing with
a large computational overhead.



less than the sum of the theoretical peak powers. This power loss would be an addition to the power loss
related to the noise statistics, which effect is described below. For the choice of T' = 1 s, the frequency
resolution is Av = 1 Hz. Since the differential subcarrier frequency error given by the ASMS specification
is 0.1 Hz (Appendix A), an incoherent recombination of the two harmonics is quite efficient.

To evaluate the power loss due to incoherent recombination of the two tones of equal power, we compare
the power signal-to-noise ratios of a single and two summed tones to achieve comparable statistical
performance. Figure 6 presents this comparison of receiver performance and also exhibits the performance
when the same single-tone power is divided equally between two tones. The figure shows missed-detection
probability versus false-detection probability for a 100-s observation of a single tone with P/Ng = 0 dB-Hz,
and for two tones each having P/Ny = —3 dB-Hz. For a given false-detection probability, the probability
of missed detection is more than ten times larger in the two-tone case. The two-tone combination scheme
achieves performance comparable to the single-tone case if the summed P/Ny = 1 dB-Hz, i.e., if the total
transmitted power exceeds by 1 dB the power transmitted in the single-tone case.
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Fig. 6. A comparison of two-tone versus single-tone
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VI. Experimental Verification

In the above analysis, the analytic expressions for the false alarm and detection probabilities assume
that the noise is white and Gaussian. The effect of oscillator instability was accounted for by limiting the
duration of the Fourier transforms to a few seconds in order to maintain signal coherence. In reality, the
oscillator may add a significant non-Gaussian non-white component to the underlying thermal noise. In
order to gain better insight into the effect of oscillator instability on receiver performance and as a check
on the theoretical detector performance calculations, data were acquired at a DSN test facility (DTF 21)
using a full spectrum recorder to record a test signal generated at the Telecommunication Development
Laboratory (TDL) using the Galileo spare auxiliary oscillator. The signal consisted of an 8.4-GHz (X-
band) carrier modulated with a 22.5-kHz square-wave subcarrier. No telemetry data modulated the
subcarrier. The FSR digitized the signal at an intermediate frequency of ~300 MHz, downconverted
the lowest eight harmonics (£1,+3,£5,+7) to separate 3200-Hz baseband channels, and recorded the
digitized samples.
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A plot of carrier frequency versus time as measured by the FSR is presented in Fig. 7. The largest local
drift rate over the 1-hour time span is approximately 0.05 Hz/s; the root-mean-square fluctuation over
10-s intervals is 0.2 Hz. This is consistent with the expected stability of the small deep space transponder
over comparable time intervals.

Attenuation of the input signal was varied over the approximately 1-hour-long observation to ob-
tain data with a range of signal-to-noise ratios. During the final 19 minutes, the +7th harmonic had
P/Ny =1 dB-Hz; these data were processed using the incoherent single-tone detection scheme presented
above: Discrete Fourier transforms, with a 1-s integration time and zero-padding by a factor of two, were
performed, and the 1-s spectra were summed using an ensemble of drift rates ranging from —0.05 Hz/s
to +0.05 Hz/s.

In order to acquire statistics on detector performance, the data were partitioned into twenty-two 50-s
subintervals, with independent detections performed on each subinterval. The relation between P,; and
Prqise was computed in the following manner: For a given detection threshold, Pfqse Was calculated
from the theoretical values of Pr given by Eq. (6), while 02 was determined from part of the data with
ignorable signal content. Next, Pj; was computed by counting the fraction of subintervals in which
the signal power fell below the detection threshold. This result and the theoretical expectations based
on Eqgs. (6) and (7) are plotted in Fig. 8. This figure shows that the measured detector performance is
degraded by approximately 1 dB relative to the theoretical performance. This appears to be a combination
of five effects (most of which are estimated in Appendices D and E): (1) approximation of the frequency
drift model with a discrete step-wise linear model mandated by the discrete Fourier transformation
(—0.003 dB), (2) deviation from the linear frequency-drift model, (3) omission of the non-white oscillator
noise from the theoretical calculations, (4) power loss due to tone-frequency fluctuation during Fourier
integration time (—0.15 dB), and (5) power loss from tone misalignment relative to the Fourier frequency
including the zero-padding effect (—0.3 dB). There is one more known source of error: omission of the
effect of zero padding on the statistics of probabilities of missed and false detection. An analysis of this
effect is not within the scope of this article. It should be noted, however, that low probabilities of missed
detection are not much affected by zero padding and, thus, most likely are ignorable in the 1-dB power
loss above. The estimated losses add up to 0.45 dB; thus, part of the 1-dB loss is explained qualitatively.

38o[Trrrrrrrrrrrrrrr T T T T T T T T T T
RMS FLUCTUATION LEVEL AT 10s: 0.2 Hz

370 - LARGEST DRIFT RATE: 0.05 Hz/s

360

350

Av, Hz

340

330

3200~ v v by by by by v L
0:30 0:40 0:50 1:00 1:10 1:20 1:30

TIME ON DOY 96-064

Fig. 7. Frequency drift of the Galileo auxiliary oscil-
lator versus time, measured by the FSR at DTF 21.
The frequency is measured at 10-s intervals.
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Fig. 8. Theoretical versus measured receiver perfor-
mance for sums of 50 1-sec FFTs. False alarm prob-
abilities are computed using 3200 Fourier frequen-
cies and 10 drift rates.

Our final task is a projection of the measured 1-dB loss onto an observation of 1000 s. Since the
frequency fluctuation of the oscillator noise is correlated over the observation interval, and this correlation
is not perfectly removed by the process of summing the powers of Fourier transforms via spectrum
alignment, the oscillator noise error of the averaged power is expected to be somewhat larger than that
of a single Fourier transform. An evaluation of this power loss is fairly complex; our current rudimentary
estimate gives an additional loss of 0.3 dB for a 1000-s observation.

Also, on larger time scales, nonlinear frequency drifts must be considered; thus, a polynomial model
or quadratic spline is used to model the frequency drift. In extending a 50-s observation to a
1000-s observation, the duration of observation is increased twentyfold. However, the ASMS frequency-
drift specification severely limits the range of polynomials that need be considered for alignment of the
spectra. We estimate that the search space is not enlarged more than tenfold by using a low-order poly-
nomial model. This expansion of the search space increases the false-detection probability; an estimated
0.3 dB is required to compensate for the performance degradation.

Summing the above effects, it is anticipated that the performance power loss for a 1000-s observation
is larger than the 1-dB loss concluded from the 50-s observations by about 0.6 dB. As a precaution, we
empirically increase the estimated performance loss to 2 dB for a 1000-s observation.

VIl. Conclusion

In order to translate the above considerations into a practical spacecraft-detection scenario, perfor-
mance criteria, i.e., the probabilities of false and missed detection, must be specified. Therefore, we
assume a spacecraft with a lifetime of 3 years (1000 days) during which there are practically no false
or missed detections. Observations are conducted daily. These conditions bound the false and missed
probability values at the 1/1000 = 1072 level. Therefore, we chose a value sufficiently below this level:
Pratse = Py =5 x 1074,

Figure 5 indicates that the corresponding power signal-to-noise-density ratio is P/Ny =~ —5 dB-Hz for

detection of a single tone observed for 1000 s (T' = 1s, N = 2000, M = 1000, and N,. = 100). This must
be corrected by 1 dB if the power is distributed between two tones that are incoherently combined; also,
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between 1 and 2 dB must be added to account for the previously discussed losses in the performance of
the detection algorithm. Finally, an additional 0.9-dB correction is required to account for the fact that
the actual signal is a square-wave modulated carrier and only the strongest two harmonics are retained.
Thus, the requirement on the received P/Ny is —1 dB-Hz.
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Appendix A
Study Assumptions

Table A-1 lists a set of assumptions that have guided the algorithm development.'? It is assumed that
the signal structure consists of a carrier signal frequency modulated by a square-wave subcarrier, with
no additional modulation on the subcarrier. The spacecraft may use any of four different subcarriers
to modulate the carrier. The resulting signal spectrum is a set of delta functions located at v, + nvg.,
where n = 0,4+1,4+3,£5, ..., v, is the carrier frequency and v, is the subcarrier frequency. The power in
each subcarrier tone is inversely proportional to the square of the harmonic number; if the carrier is fully
suppressed, then 81 percent of the transmitted power resides in the upper 1st and lower 1st subcarrier
harmonic. Processing only these first harmonics reduces the required bandwidth of the receiver, while
sacrificing approximately 0.9 dB of the available power.

Table A-1. Assumptions for the algorithm development.

Parameter Description
Signal structure Carrier modulated with square-wave subcarrier
Signaling scheme Four different subcarrier frequencies
Carrier frequency 8.4 GHz (suppressed)
Carrier frequency uncertainty +1 kHz/48 h
Subcarrier relative stability 0.1 Hz
Observable frequencies First harmonics of the four subcarriers

420, £25, +30, £35 kHz

Duration of observation One observation/day, 20 min maximum
Oscillator drift range (maximum) 10 Hz/30 min, linear or quadratic drift
Local drift rate (maximum) 0.05 Hz/s
Oscillator noise at constant temperature® 0.1 Hz at 1 s, 0.2 Hz at 10 s,

0.4 Hz at 100 s, 0.7 Hz at 1000 s

2The oscillator noise figures are based on the specification of the Allan standard deviation
of the small deep space transponder, currently under development at JPL.

13 M. K. Sue, “Preliminary Study Assumptions for the ASMS Study,” JPL Interoffice Memorandum 3313-96-MKS02 (internal
document), Jet Propulsion Laboratory, Pasadena, California, February 20, 1996.
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Appendix B

Glossary of Symbols

The following provides a list of the symbols used throughout this article along with short descriptions

of their use:

a(vy) = the Fourier amplitude of random noise, cosine components
b(v) = the Fourier amplitude of random noise, sine components
¢(vi) = the complex Fourier amplitude of random noise
v = the discrete frequency of the Fourier transform
vs = the tone frequency of the signal
P(condition) = the symbol of mathematical probability
Pp = the probability of detection
Pr = the probability of false alarm
Pjqise = the probability of false detection
P, = the power of the signal tone
P,, = the power of the thermal noise
P,, = the power of the amplitude sum of signal and noise
X2 = the chi-square probability variable or distribution
02 = the variance of the thermal-noise amplitude
Av = the Fourier frequency spacing
1n = the power threshold
Ny = the threshold of summed power
Ini—1(2) = the modified Bessel function of order M — 1
M = the number of sequential Fourier transforms used for summing power spectra
N = the number of samples in a Fourier transform
T = the sampling interval
T = the integration time of the Fourier transform
Ny = the constant spectral density of noise
1o = the power signal-to-noise ratio
yom = the total power signal-to-noise ratio
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Appendix C

Spectral Power of a Pure Tone Embedded in Noise

In the receiver, a pure spacecraft tone of frequency vy, amplitude A, and phase' § may be represented
as the sum of the tone and the receiver noise:

Kmax
x(t) = Acos(2mvst +6) + Z (a(vk) cos 2yt 4+ b(vy) sin 27vgt) (C-1)
k=Kmin

where the spectral noise coefficients a(vy) and b(vy) are assumed to be white and Gaussian with zero
means and variances of o2 [10]. The frequency index of the tone signal is denoted by s, which, for
simplicity, is assumed to coincide with one of the noise indices. The deviation from this assumption
causes signal spread, and this effect will be discussed in Appendix D. The Fourier expansion of the noise
is given over a time interval T and, therefore, vy = k/T and (Ko — Kmin)/T = w,, where w, is the
frequency bandwidth of the receiving system. Equation (C-1) can be rewritten in complex variables as

K"YLG(E
z(t) = Z c(vg)e?™ k! 4+ Complex Conjugate (C-2)
k=Kmin
where
1 : i0
c(v) = B (a(vi) — ib(vk) + 6k,s Ae™) (C-3)

We can now convert the frequency span of z(t) into a baseband range by multiplying it with orthogonal
sinusoid functions with a base frequency v, and applying a low-pass filter F' with a bandwidth w:

Fo[2(t)2 cos 2mupt]

TL(t) = {Fw [(t)2sin 27wyt “

Then, after an index translation in frequency k — ky, — k, we get

szYla(E
T4(t) = Z c+ (v )et? et (C-5)

—kmaz

Here vy, = k/T and kpe./T = w, where w is the frequency bandwidth of the filter and the following
notations were introduced:

14 In general, the phase may be a function of the time (i.e., phase noise); here it is approximated by a constant.
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et (vk) = c(vy) ifk>0
et (vgy = c(vr) + ¢ (vk) if k=0
c_(vg) =ic(vy) itk>0 (C-6)

c—(vgy = ic(vg) + (ic(v))" ifk=0

cx(vog) = cL(vg) for all &

Since the two data streams Z(¢) and Z_(t) represent orthogonal components of the Fourier spectrum,
both may be sampled at half of the full Nyquist rate (the FSR samples accordingly). If T, denotes the
corresponding double Nyquist sampling interval, then k... = T/Ts = N, where N is the number of
samples in the time interval T

The Fourier amplitudes cy (1) can be expressed as

1 [T ,
es () = 7 / dt g ()e2met (C-7)
0

which, for finite sampling of Z4 (), can be approximated by the sum

N
1 =, —i2Tvt;
e () = 7 D Falty)e™ 2 (C-8)
j=1

This is equivalent to the approximation of the Fourier transform over a finite sampling interval using a
finite number of sampling points. The time-averaged power then is given by

P:%/O dt%(ii(t)—i—ig(t))

L (EO+EO) Y (er W)+ le-()]?)
k=1
kWLaI T
=S Y (@) + () = %/0 dt 22(1) (C-9)

k=0

which expresses Parseval’s theorem and conservation of power during downconversion. Notice that averag-
ing over both components of downconverted power was necessary to conserve power due to the aberration
at zero frequency. All statistical information can now be deduced from the multivariate Gaussian distri-
bution of the coefficients a(vy) and b(vy), which are independent variables with zero mean. If we assume a
flat single-sided power spectrum density Ny, then the time and ensemble-averaged power of single Fourier
components becomes
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1 1
<P@::@w§A2+Ahf (C-10)

since the bandwidth of a single Fourier component is 1/7T', k4. /T = w as noted above, and (1/2)(a?(vy)
+b%(vg)) = No/T. Equation (C-11) below is then the sum of the time and ensemble-averaged power of
single Fourier components:

max

1 " 1
P) = —A? No—

1
5142 +N0w (C_l]‘)

Thus, denoting the signal power as Py = (1/2) A2, the signal-to-noise ratio at the tone frequency becomes
(Ps/No)T.
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Appendix D

Spectral Interpolation

The discrete Fourier transform is defined over a set of fixed frequencies while the actual tone frequency
will not fall on one of the fixed discrete frequencies. As a result, the power spectrum of the tone spreads
over all Fourier frequencies, and the observed peak spectral power is less than the original power of the
tone. For a given tone frequency v, and Fourier integration time T, the signal power at the discrete
Fourier frequency vy, is sinc?(m(vy, — v5)T).'> The worst case is when the tone lies exactly between two
Fourier frequencies, |v —vg| = 1/2T; the two peak powers are then reduced by 4 dB as compared with the
original tone power. This effect can be partially removed by either interpolation of the Fourier spectrum
or by shifting the tone frequency of the signal closer to the discrete Fourier frequency.

The Fourier spectrum is interpolated by “zero-padding” the data by adding a sequence of fake samples
with zero value to the end of the sequence of observed samples prior to the Fourier transform. As
the duration of the Fourier transform increases, the number of Fourier frequencies also increases for a
fixed bandwidth. This has the effect of decreasing the frequency difference |v; — v;|, while T' remains
unchanged in the sinc?(w (v, — v,)T) function. If the data are zero padded by a factor of two, i.e.,
N zero-valued samples are appended to N observed samples, the maximum power loss due to signal
misalignment with the Fourier frequencies is 10log sinc? (r/4) = —0.9 dB; zero padding by a factor of
four reduces the maximum loss to 10logsinc?(7/8) ~ —0.2 dB. These Fourier-transform interpolated-
resolution improvements come, of course, at the expense of increased computation as well as increased
complexity of statistical considerations. As a compromise, zero padding by two was used in the evaluation
of experimental data.

The average power loss can be calculated by integral averaging the gain function sinc? (7v/Av) over
the interpolated resolution:

2%k Av/2k 2% w/2k . 2
Gp = —— dv sin® 2 = =X dz <sm$> (D-1)
Av J, Av 7w J, x
where k is the factor of zero padding. Expanding the integrand in a Taylor series gives
2k [T/ 1 2 Tym\2 2 /w4
G = — de (1- 2%+ —a*. . :1——(—) —(—) D-2
m= 7 ) x( 37t 5" > o\ar) 25\ (D-2)

Therefore, for a zero padding by a factor of two, the average power loss is ~0.3 dB.

The alternate method is frequency shifting of the tone. In this case, two or multiple baseband con-
versions are performed at the frequencies of vy, vy + Av/2, v, + Av/4, etc., where v, is the baseband
frequency. Processing each baseband data stream then yields estimates of the signal power. The optimum
of these powers is selected, giving estimates of the signal power and frequency. This method requires an
increased amount of computations; however, the process can be streamlined somewhat for computational
efficiency.

15 sinc = sinz /.
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Appendix E

Power Loss Due to Frequency Drifts: Estimation of
the Integration Time of Fourier Transforms

We consider two kinds of oscillator frequency drifts: a long-term drift caused by temperature changes
(this is subsequently modeled by a linear function) and the stochastic frequency noise of the oscillator.¢
Although these are simultaneous effects, we first consider them separately. The determination of the
optimum value of the integration time T is performed in iterative steps. In the first step, a crude
statistical estimate is given from power loss considerations, and then the value of T' is chosen. In the
second step, an approximate value of the signal power-loss is calculated for the chosen T

The constraint that the frequency drift no more than one-quarter of the Fourier-frequency spacing, Av,
during the integration time, T, implies Av/T > 4 and, since Av = 1/T, thus, T < 1/v/4i. According
to the ASMS specifications, v = +0.05 Hz/s; thus, T < 2.2 s. However, besides the linear drift, the
oscillator fluctuates at the 0.1-Hz level at an integration time of 1 s, and the fluctuation level is higher at
larger integration times (Appendix A). By denoting the standard deviation of the oscillator fluctuation
by 0osc(T), the drift range condition above implies that, for a 3¢ confidence level, 30,s. < 1/4T and,
thus, T' < 1/(120,s.(T)). Using the 1-s specification for noise, we get T' < 0.83 s. If we superimpose the
noise on the linear drift, then the presence of fluctuation increases the drift, the equivalent extreme drift
rate can be approximated by © 4 30,s.(T)/T, and, therefore,

300sc(T) 1

_— E-1
T 472 (B-1)

v+

This implies that

V 2 - T ) — osc T
14

and, thus, T < 0.74 s. These simple statistical considerations largely coincide with our experimental
observation on the spare oscillator of the Galileo spacecraft; the detection performance degrades over a
few seconds of integration time.

Now we are in a position to calculate the actual power loss due to tone-frequency fluctuation. Based

on the above estimates, we choose T' = 1s. The frequency gain function of the tone is

2V T (VN }
G, (vT) = sinc® T ~ 1 3( ) (E-3)

By averaging over the frequency fluctuation, we get

2

(Go(T)) =1 = - (00ueT)T)? (E-4)

Since 0ys.(1s) = 0.1 Hz/s, the loss due to the frequency fluctuation is 101log (1 — (72/3)0.1?) ~ —0.15 dB.

16 There also is a residual Doppler frequency drift due to spacecraft-trajectory modeling errors. For a deep-space probe, this
effect is ignorable in comparison with the oscillator drifts.

21



The average power loss due to the linearly drifting tone frequency is calculated by frequency-rate
averaging the power of the Fourier amplitude of the drifting signal at zero frequency;'” thus, the frequency-
rate gain function is

. .2
17 o1 7 i27 ft2
Gy(vT?) =< | df|= [ dt E-5
01 =5 [ aflg [ ar e (E-5)
Expanding the inner integrand into a Taylor series and performing the integral, we obtain
L jirr @iyt |
: T ™
Gy, (vT?) == | dfj1+i — .. E-6
075 =3 /0 Aty 10 (E-6)
Collecting the lowest order of corrections and performing the integral over f , the final result is
Gy(T?) =1— 4—”2(1)’[2)2 (E-7)
Y - 345

Substituting the ASMS value, v = 0.05 Hz/s, and setting T' = 1 s, we get the final estimate of the power
loss due to linear-frequency drifting of the tone: 10log(1 — (47%/135)0.05?) = —0.003 dB.

17 In general, the gain function is evaluated for the complete frequency-drift function, and it is averaged over all parameters
simultaneously. The first-order cross term vanishes for symmetric averaging; that is the reason for evaluating Eq. (E-5)
at the zero frequency. The contribution of the higher-order cross terms is ignorable here.
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